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Asymptotic formulas are obtained which make it possible to derive the first 
approximation solution of the Riccati matrix algebraic equation of special form. 
Method is based on Bass’ formulas [l) and the theory of perturbations [2], The 
problem of control of a slowly damped oscillator is investigated in detail, Form- 
ulation of the problem in this paper differs substantially from that in [3] (no 
assumption is made about single-frequency oscillations, and only a stationary 
system is considered over an infinite time interval). 

1. Statement of the problem. Motion of the controlled object is 
defined by the system of linear ordinary differential equations 

. 
x =Fx+Gu, x(O)#O (1.1) 

We have to determine vector u of control actions as a function of the phase vector 
x which minimizes the quadratic performance criterion 

I = i (x’Qx + u’B,u) dt (1.2) 

where the prime indicates transposition, and F, G, Q = 0 and Be = Be’ are 
constant matrices, with the pair F and G amenable to stabi~ation 111. 

Matrix B8 is assumed large. This definition is formalized by the introduction of 
the small parameter & 

Be = e-=B 

The use in this problem of the term “weak control” is related to that after the 
formal ~bsff~tion u = ev system (1.1) is weakly controllable in the meaning 
given in [4]. The term “slowly damped system” means that matrix F is nearly skew- 

symmetric, i.e. that F = Fo + em,, Fo =(F-FF’)12>(F+F’)12=d-D. 
The use of this term is explained by that the equations which define the motion of an 
undamped mechanical system with n degrees of freedom can be reduced to a system 
of &s differential equations of the first order with a dew-symme~c matrix (see, 

e. g., CU. 
The solution of the problem of optimal control synthesis for system (1.1) that sat- 

isfies criterion (1.2) reduces to finding the,solution of the Biccati matrix algebraic eq- 

uation (see, e.g. e ClD 

PF + F’P - sPGB-WP + eQ = 0, P = eS (1.3) 

Certain problems of determination of solid body orientation also involve investiga- 
tion of Biccati equations of a similar type [6]. In what follows we assume that there 
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exists for any 8 > 0 
nomial of matrix F - 

a solution of (1.3) for which roots of the characteristic poly- 
EGB-‘G’P Lie in the left-hand half-plane. 

2. Derivation of asymptotic relations. Bass’formulas[l] 
and the perturbation theory [2] are used below for deriving the first approximation with 
respect to 8 of the solution of Eq. (1.3). The system of Euler’s differential equations 
whose matrix is of the form 

z = Fo+d - EGB-IG’ 

I EQ F. - EW 
(- Fo’ = F,) - (2.1) 

corresponds to Eq. (1.3). 
Let cp (8) represent the result of factorization of the characteristic polynomial of 

matrix (2.1) 

det 11 2 - Es 11 = cp (s) cp (-s) (2.2) 

with the roots of cp (s) lying in the left-hand half-plane. Then according to [l] the 
sought matrix P satisfies Bass’ relation 

cp (qj P 11 
E 0 = (2.3) 

Let us represent matrix 2 and the polynomial cp (s) in the form 

cp (s) = s” + 8pg- + (p20 + 8p,y2 + dpss*-3 + * * - 
. . . + (Pno + bl) 

and take into acount that for E = 0 

qeEo (s) = vEzO (-s) = det 11 F. -- Es I( = S” -I- P&n_2 -I- - - - -I- Pno 

where the absence of odd powers of s is due to the skew-symmetry of matrix Fo 

and the polynomial ‘&=0(s) has ?z / 2 pairs of imaginary roots f ivj(j = 1,2, . . ., 
n / 2)). The quantities 6pk (k = 1, . . . ,n) in (2.4) are small when e is fair- 

ly small. Taking into account that 

cpeEo (2,) = zo” + p20Zo”-2 + . . . + pnoE = 0 

we represent formula (2.3) with an accuracy to smalls of second order with respect to 
8 in the form 

Z;-leWZ;-k) + 8pJy + pas ( i3 Z:-WGF;-k) + (2.5) 
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Formula (2.5) shows that the basic difficulty in using Bass’ formula (2.3) relates 
to the necessity of a reasonably accurate determination of coefficients of the polynomi- 
al fp (s) (or of corrections 6pg to the coefficients). The problem can be considered 
solved when corrections to roots f ivj of polynomial a)E+ (S) have been determ- 

ined with reasonable accuracy. Let us determine these corrections. We seek the roots 
j.rI of the characteristic polynomial of matrix 2 in the form of series in powers of 
e 

1 = 2k - 1, p{ = iv/$ + 8h,l + 0 (8”) (2.6) 
1 = 2k, pi = - ivk + & + 0 (e2) (k = 1,2, . . . ) 

Corrections & cannot be determined hy the direct application of results of the 
perturbation theory [2] to matrix 2, since 20 is not a self-conjugate transformation. 
Because of this we consider matrix 

Za = ZOs + ZoeW + eWZo + (am2 = Ze2 + eT 

to which it is possible to apply the results of [Z], since matrix 20s is symmetric. 
The roots of characteristic polyno~a~ of matrices 20s and Z* are, respectively, 
-VP and pra 

1 = 2k - 1, p12 = - WCs + q,z + 0 (ES), ey,, = 21h,ph_ (2.7) 

E = 2k, pt2 = - v~r’ + syl2 + 0 (87, qll = -2ih,prr 

where the corrections eylr can be determined by the method of the perturbation 
theory. 

Let us determine eJ$. We assume that - vks is a 2r -multiple eigenvalue 
of matrix 20~ . We denote by flk, fak, . . ., f2,.k the set of orthonormal eigen- 
vectors of matrix Zo2 that correspond to - vk2. According to [2] corrections Eyrk 
are eigenvalues of matrix Dk = If dmsk If whose elements are scalar products of 
vectors eTfRk and f,,,k 

&,, = (ETfl: * fk) 

Hence COrreCtiOnS 8ylk are roots of the eC@atiOn 

det 11 Dk - %kE 11 = o (2.8) 

Formulas (2.6) and (2.8) make possible the determination of roots of matrix 2 
in the first approximation and, consequently, also corrections 6pk to coefficients of 
polynomial Q, (8). If the first approximation corrections are such that all roots & 
have nonzero real parts, formulas (2.5) makes it possible to find the approximate solu- 
tion of Eq. (1.3). Since for the obtained approximate value of P the roots of the 

characteristic ~lynomial of matrix F - eGB_rG’P lie in the left-hand half-plane 

(they coincide with those roots PI (E = 1, . . . , n) whose real parts are negative). 
hence using the Newton -Rafsonscheme [l]it is possible to further refine the obtained 
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value of P. If, however, in the first approximation there are imaginary roots among 

Pl 7 subsequent approximations must be used for determining P. 

3. Approximate solution of the problem of control 
of a single oscillator. The equations of motion of the controlled object 
are of the form 

X’ = y, y’ = - x - &fly + u 

We define the performance criterion by formula 

I= J&E2 + qzy* + .5-w)dt 

0 

Matrices in Eq. (1.3) and subsequent relationships are of the form 

II 0 1 0 0 II no 000 

"=I/0 
m II0 0 II 

z”= 
-10 0 -1 

-B ’ 0 0 0 1’ 
0 0 I WE I -p 0 

-q1 0 0 0 

0 0 -10 0 --20 B 

(3.1) 

(3.2) 

For e = 0 the polynomial cp (s) is defined by 

cpc=o(s) = det 11 F,, - Es 11 = sa + 1 

Since the roots of this polynomial are f i , hence pzo = 1 and v = 1. Let 
us determine the corrections to the zero approximation of roots of matrix 2. 

Matrix Zo2 = - E has 1 as its unique eigenvalue whose multiplicity is four. 

Vectors 

1, 0 0 0 

f P= ,; , f2= 1 0 () 9 fs= $ , fq= ; 

0 0, 0 1 

can be chosen as the set of orthonormal vectors corresponding to that eigenvalue. 
Matrix D = II d,, II is equal ET ; it can be defined with an accuracy to ea 

in the form 

0 

D = ET~EWZ~+Z~EW = e B 

(Qr : q2) 
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Note that matrix D can be represented in the form of the Kronecker product of 
two second order matrices 

hence the eigenvalues of matrix D (corrections eyrr) are the products of eigenvalu- 
es of matrix cofactors whose eigenvalues are f ie and f v/ga + or + qz. ‘Thus 

Vll = zt ie VP + q1+ qz7 &z =&1/24/82+ql+q, 

and, consequently, the first approximation roots p1 and p,s of polynomial cp (s) 
are 

P&2=: -%nV’P+a*+4at-i (3.3) 

The same asymptotic formula for roots pr,a can be obtained using the results 
[of analysis] in [7], according to which in the notation used here the following relat- 
ions between coefficients qr and qz , roots p1 and p2 of polynomial cp (s) , and 
roots O1 and 0, of the characteristic polynomial of matrix F: 

&?I = (WQ - (WV (3.4) 

a% = (CL1 + CL2 - (@I + (Ma + 2 @Ml - Ws) 

are valid. Let 

hence with an accuracy within 8s from (3.4) we have 

rll = 0, PI = ZP,r + 4%, qa = 2pp - 4% - B” 

Hence the approximate expression for roots pI,s is of the form (3.3) accurate 
within ua . 

Let us now determine the corrections of coefficients 6p, and 8~s 

Formula (2.5) accurate to within smalls of second order is of the form 

This expression is concretely defined by the following two matrix equations : 
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each of which can be used for determining matrix P. 
Thus the first approximation of the sought solution of Eq. (1.3) for the considered 

here problem is of the form 

P= - iLEe_I, S = -A_Ee-a (3.5) 

Let us evaluate the qpantity of the approximation obtained by these formulas. 
Let the damping in system (3.1) be fixed, i.e. 0 < efl = PO = const. The Liapunov 
equation into which the Riccati equation (1.3) is transformed for e = 0 has the 
solution 

The approximate expression for ,$ in (3.5) approaches the first term (which for 
small PO is the principal one) of this solution when e-+0 , since 

- P, + ~/PI? + e% + e2v2 1imS = lim - & = 41 f q2 E - F 

E-a e-a e2 330 

In the absence of damping in system (3. l), i. e. fi = 0, Eq. (1.3) is satisfied 
with an accuracy within e by any matrix which is a multiple of the unit matrix 
(P = aE). This becomes clear if we substitute in (2.1) matrix UE for p , which 
yields the following formula for the discrepancy matrix: 

Note that the coefficient a = Jfql + qa, which corresponds to (3.5) does not, 
generally speaking, minimize the norm of the discrepancy matrix, although even in 

this case formula (3.5) may yield a good approximation. Thus, for example, for 

q1 = 1, qa = 3, e = 0.1, and fi = 0 , from(3.5) we have 

2 0 
p= 0 2 II II 

The exact solution of Eq. (2.1) is in this case of the form 

P= 
2.01 4.99.10-Z 
4.99.10-2 2.0 I/ 

Note that for fl = 0 the asymptotic formula for P that coincides with (3.5) 
(with accuracy within e ) may be derived from the exact solution of this problem 

(see [8]. Example 2) 
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D - w - &d-l 
H== b 

- 92% I e2 (Ql + cl24 
’ 

d= 4dz 
b = ‘/a~~t-~ ((II + q-z) (~1 + cl&), a = d hr[2 I4 + V&~-2 (qx f qz)*P I 
1: = I/&, + 2d - 2, d = 1/l + e2ql 
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